Using Dissolved Oxygen Dynamics to Derive Nutrient Criteria: Tried, True, and Troublesome

Author(s): Hicks, M.; Paul, M.; Caviness, K.

Linking nutrient enrichment to adverse ecological effects involves a series of potential causal pathways and proximal stressors. A common proximal stressor is alteration of dissolved oxygen dynamics due to enriched organic matter loading and decomposition. Predictions associated with nutrient enrichment include both the potential for reduced minimum oxygen concentrations, as well as, increased maximum dissolved oxygen and diel fluctuation. Several states have expressed interest in and used oxygen range as a potential response metric. The U.S. Geological Survey sampled more than 50 low gradient Mississippi streams for the period 2009 to present and analyzed samples for dissolved oxygen and nutrients. Several oxygen characteristics were calculated (min, max, range, mean, sd) and related to concurrent nutrient, chlorophyll, and invertebrate assemblage data. All measures of oxygen showed some relation to nutrient concentrations; however, minimum and central tendency measures were most strongly related. At the same time, invertebrate metrics showed a stronger response to minimum concentration among all other measures.
Download the presentation

Go back


Technical Sessions

1 Best Management Practices #1
2 Delta Water Assessment
3 Flood Assessment & Mgmt.
4 Wetlands
5 Watershed Mgmt. #1
6 Non-Point Source Assessment
7 Modeling
8 Water Quality
9 Best Mgt. Practices #2
10 Delta Water Conservation
11 Sedimentation
12 Storm Water
13 Watershed Mgt. #2
14 Public Water Systems
15 Surface Water Assessment & Evaluation

Click here to view the entire agenda