Abstracts

Assessment of tailwater recovery system and on-farm storage reservoir efficacies: Quality issues

Author(s): Omer, A.; Czarnecki, J.

The Lower Mississippi Alluvial Valley is economically important due to its highly productive agricultural land. However, producers in this region face two predominant environmental issues that are inherently linked to the intensity of the agricultural industry in this region. First, intensive agriculture practices which have resulted in increased surface transport of nutrient-laden sediments, contributing to eutrophication in receiving waters and to the Gulf of Mexico Hypoxic Zone. Second, current water withdrawals from the Mississippi Alluvial Aquifer for irrigation are not sustainable. These issues threatening environmental resources necessitate use of best management practices and groundwater conservation. This research investigates systems of best management practices as water resource conservation methods. Such practices include surface water capture and irrigation reuse systems. Referred to as tailwater recovery systems (TWR), this practice consists of a tailwater recovery ditch which may be paired with on-farm storage reservoirs (OFS). Five case studies of different TWR were monitored for nutrients during a single growing season at: inflow, edge of field, TWR, OFS, and overflow locations. Investigations highlight functionality for nutrient recycling, and descriptions of nutrient loss mitigation. Additional research includes quantification of nutrients lost and captured during rice patty drains into TWR using in-situ nitrate sensors. Although research on these systems continues, initial results from three TWR in 2013 show over 278 million liters of water being recycled applying a mean of 0.96 kg/ha total nitrogen and 0.15 kg/ha total phosphorus. These systems are proving successful in holding water on the landscape, recycling that water, and therefore nutrients. Thereby preventing those nutrients from being lost to downstream waters. This suggests that TWR have much promise for water resource conservation in the Lower Mississippi Alluvial Valley.
Download the presentation

Go back

Contact

Past Conference Archive