A Study of Seagrass, Ruppia maritima and Halodule wrightii, at Grand Bay National Estuarine Research Reserve

Author(s): Nica, C. ;  Cho, H.

Seagrass beds provide nursery and foraging habitats for marine life, help improve water clarity, help reduce coastal erosion, and buffer wave energy. Therefore, temporal changes in their distribution and abundance indirectly reflect changes in the habitat quality and environmental health status. Ruppia maritima, the most abundant and common species in the Mississippi seagrass beds, is an opportunistic, pioneer species that is highly dependent on sexual reproduction. In order to provide information needed to identify areas that can support seagrass growth and to understand the temporal variations in the seagrass structures within the areas, we conducted biannual surveys at Ruppia maritima and Halodule wrightii beds in Grand Bay National Estuarine Research Reserve (NERR), Mississippi. We hypothesized that there were significant spatial and short-term fluctuations in the coverage of Ruppia/Halodule beds. Three-way ANOVA was used to analyze seagrass depth distribution and abundance, which we surveyed along water depth gradients and shoreline orientation. Other pertinent water quality parameters - turbidity, [chlorophyll a], dissolved color, dissolved oxygen, pH, salinity, temperature, sediment, nutrients, and water level were monitored in-situ or obtained from the NERR monitoring data. The coverage and distribution of the beds dominated by R. maritima and the Ruppia—Halodule mixed beds of the tidal bay area (the estuarine area) in the reserve vary substantially primarily due to changes in R. maritima abundance between summer and fall. Our results on site variation in SAV coverage suggest that shore orientation and wind-driven energy within the estuarine system might be contributing factors to the spatial difference in the shallow estuary. The estuarine Ruppia population that grows in the shallow, high wave energy environment has an annual growth pattern: seedling growth in early spring, rapid vertical growth in April, producing abundant inflorescence and seeds in May and June, and senescence in the fall. On the other hand, R. maritima that occurs in the bayous and marsh in the reserve area, where tides and wind-driven wave actions are less severe, rarely flowers and sets seeds. Our results also suggest that consistent SAV survey efforts are needed to reduce errors in assessments of disturbance/restoration impacts and long-term trend, which will provide a useful tool for management and research.


Technical Presentations

  • Delta Water Quality
  • Delta Water and Agriculture
  • Wetlands
  • Water Quality
  • Sediments
  • Non-Point
  • Management and Sustainability
  • Wood Treatment
  • Modeling
  • Soil and Water Treatment


Responsible Site Design: Implementing Innovative Stormwater Management Strategies

The primary goal of the workshop is to create a dynamic learning experience that examines the role of stormwater management in the built environment. The workshop will focus on integrating ecologically sound water management approaches into site design. After the workshop, attendees will be familiar with the following concepts and technical issues:

  • Knowledge of the stormwater treatment chain
  • Knowledge of the impact of land use codes on stormwater management
  • Application of a design process that mitigates the effects of stormwater on-site
  • Knowledge of the relationship between land use codes and design for innovative stormwater management


For information contact:
Jessie Schmidt
Box 9680
Mississippi State, MS 39762