Abstract

Use of Borehole Geophysics to Determine Zones of Radium Production in Northern Arkansas

Author(s): Hart, R. ;  Kresse, T.

Borehole geophysics can be used to identify zones of radium production and can aide in design of new well construction so that radium levels in new wells are minimized. Elevated radium levels in water from deep wells (average depth of approximately 2,000 feet) drilled into the Roubidoux Formation or Gunter Sandstone in northern Arkansas are an ongoing issue. Some wells drilled for public supply use have been abandoned because radium levels exceed the maximum contaminant level set by the U.S. Environmental Protection Agency. The U.S. Environmental Protection Agency has established a maximum contaminant level for combined Ra-226 and Ra-228 in public water supplies of 5 picocuries per liter. Radium levels (of about 6-7 picocuries per liter) in water samples from a public supply well near Hasty, Arkansas, exceed the maximum contaminant level.

Borehole geophysical methods are useful in determining physical and chemical properties of formations and groundwater in and around the well, in addition to aquifer hydraulic characteristics. A suite of geophysical logs that included flowmeter and natural gamma were recently completed by the U.S. Geological Survey Arkansas Water Science Center for a well near Hasty, Arkansas. These data were used to determine zones of flow into and out of the well, as well as the lithology near the flow zones. This information, combined with water-quality data, could provide insight needed to correlate specific lithology or fracture sets with radium levels.

Other wells in northern Arkansas contain elevated radium levels according to the Arkansas Department of Health. Zones of radium production will be evaluated in 3-5 of these identified wells to further correlate elevated radium with specific lithology or fracture sets. The identified lithology and fracture sets associated with the elevated radium can then be avoided or plugged in future well construction to minimize radium levels in those wells.







 

Technical Presentations

  • Delta Water Quality
  • Delta Water and Agriculture
  • Wetlands
  • Water Quality
  • Sediments
  • Non-Point
  • Management and Sustainability
  • Wood Treatment
  • Modeling
  • Soil and Water Treatment

Workshops

Responsible Site Design: Implementing Innovative Stormwater Management Strategies

The primary goal of the workshop is to create a dynamic learning experience that examines the role of stormwater management in the built environment. The workshop will focus on integrating ecologically sound water management approaches into site design. After the workshop, attendees will be familiar with the following concepts and technical issues:

  • Knowledge of the stormwater treatment chain
  • Knowledge of the impact of land use codes on stormwater management
  • Application of a design process that mitigates the effects of stormwater on-site
  • Knowledge of the relationship between land use codes and design for innovative stormwater management

Information

For information contact:
Jessie Schmidt
MWRRI
Box 9680
Mississippi State, MS 39762
662-325-3295
jschmidt@cfr.msstate.edu